[pure_bullshit] Fw: Wow

  • From: "Domingo Pichardo" <dmarc-noreply@xxxxxxxxxxxxx> (Redacted sender "dpichardo3" for DMARC)
  • Date: Thu, 18 Mar 2021 13:21:20 +0000 (UTC)

This reminds me of the principles behind the use of the Rife microscope to 
"treat" cancer... I wonder whether this therapy will ever be developed... it 
would put big Pharma out of business! Where is the Warp Speed program for the 
development of this possible breakthrough in infectious disease management?   
Still, I do believe that it is much wiser to help people become "immune fit" 
instead of having people live in a sterile bubble where they never get a chance 
to exercise their "immunity muscles"!
   ----- Forwarded Message ----- From: Pichardo To: "dpichardo3@xxxxxxxxxxx" 
<dpichardo3@xxxxxxxxxxx>Sent: Wednesday, March 17, 2021, 09:51:40 PM 
EDTSubject: Wow
 https://news.mit.edu/2021/ultrasound-coronaviruses-damage-0316 


Ultrasound has potential to damage coronaviruses, study finds
Simulations show ultrasound waves at medical imaging frequencies can cause the 
virus’ shell and spikes to collapse and rupture.Watch VideoJennifer Chu | MIT 
News OfficePublication Date:March 16, 2021 PRESS INQUIRIESCaption:Ultrasound 
has potential to damage coronaviruses, a new MIT study finds.Credits:Image: MIT 
News, with images from iStockphotoCaption:The 3D image of the collapsing virus, 
right, captured at the instant of the maximum vibration amplitude. Spikes were 
removed from the color-coded plot, on left, for clarity.Credits:Courtesy of the 
researchers
Previous image Next image

The coronavirus’ structure is an all-too-familiar image, with its densely 
packed surface receptors resembling a thorny crown. These spike-like proteins 
latch onto healthy cells and trigger the invasion of viral RNA. While the 
virus’ geometry and infection strategy is generally understood, little is known 
about its physical integrity.

A new study by researchers in MIT’s Department of Mechanical Engineering 
suggests that coronaviruses may be vulnerable to ultrasound vibrations, within 
the frequencies used in medical diagnostic imaging.

Through computer simulations, the team has modeled the virus’ mechanical 
response to vibrations across a range of ultrasound frequencies. They found 
that vibrations between 25 and 100 megahertz triggered the virus’ shell and 
spikes to collapse and start to rupture within a fraction of a millisecond. 
This effect was seen in simulations of the virus in air and in water.

The results are preliminary, and based on limited data regarding the virus’ 
physical properties. Nevertheless, the researchers say their findings are a 
first hint at a possible ultrasound-based treatment for coronaviruses, 
including the novel SARS-CoV-2 virus. How exactly ultrasound could be 
administered, and how effective it would be in damaging the virus within the 
complexity of the human body, are among the major questions scientists will 
have to tackle going forward.

“We’ve proven that under ultrasound excitation the coronavirus shell and spikes 
will vibrate, and the amplitude of that vibration will be very large, producing 
strains that could break certain parts of the virus, doing visible damage to 
the outer shell and possibly invisible damage to the RNA inside,” says Tomasz 
Wierzbicki, professor of applied mechanics at MIT. “The hope is that our paper 
will initiate a discussion across various disciplines.”

The team’s results appear online in the Journal of the Mechanics and Physics of 
Solids. Wierzbicki’s co-authors are Wei Li, Yuming Liu, and Juner Zhu at MIT.

A spiky shell

As the Covid-19 pandemic took hold around the world, Wierzbicki looked to 
contribute to the scientific understanding of the virus. His group’s focus is 
in solid and structural mechanics, and the study of how materials fracture 
under various stresses and strains. With this perspective, he wondered what 
could be learned about the virus’ fracture potential.

Wierzbicki’s team set out to simulate the novel coronavirus and its mechanical 
response to vibrations. They used simple concepts of the mechanics and physics 
of solids to construct a geometrical and computational model of the virus’ 
structure, which they based on limited information in the scientific 
literature, such as microscopic images of the virus’ shell and spikes.

From previous studies, scientists have mapped out the general structure of the 
coronavirus — a family of viruses that s HIV, influenza, and the novel 
SARS-CoV-2 strain. This structure consists of a smooth shell of lipid proteins, 
and densely packed, spike-like receptors protruding from the shell.

With this geometry in mind, the  team modeled the virus as a thin elastic shell 
covered in about 100 elastic spikes. As the virus’ exact physical properties 
are uncertain, the researchers simulated the behavior of this simple structure 
across a range of  elasticities for both the shell and the spikes.

“We don’t know the material properties of the spikes because they are so tiny — 
about 10 nanometers high,” Wierzbicki says. “Even more unknown is what’s inside 
the virus, which is not empty but filled with RNA, which itself is surrounded 
by a protein capsid shell. So this modeling requires a lot of assumptions.”

“We feel confident that this elastic model is a good starting point,” 
Wierzbicki says. “The question is, what are the stresses and strains that will 
cause the virus to rupture?”
Play video
A corona’s collapse

To answer that question, the researchers introduced acoustic vibrations into 
the simulations and observed how the vibrations rippled through the virus’ 
structure across a range of ultrasound frequencies.

The team started with vibrations of 100 megahertz, or 100 million cycles per 
second, which they estimated would be the shell’s natural vibrating frequency, 
based on what’s known of the virus’ physical properties.

When they exposed the virus to 100 MHz ultrasound excitations, the virus’ 
natural vibrations were initially undetectable. But within a fraction of a 
millisecond the external vibrations, resonating with the frequency of the 
virus’ natural oscillations, caused the shell and spikes to buckle inward, 
similar to a ball that dimples as it bounces off the ground.

As the researchers increased the amplitude, or intensity, of the vibrations, 
the shell could fracture — an acoustic phenomenon known as resonance that also 
explains how opera singers can crack a wineglass if they sing at just the right 
pitch and volume. At lower frequencies of 25 MHz and 50 MHz, the virus buckled 
and fractured even faster, both in simulated environments of air, and of water 
that is similar in density to fluids in the body.

“These frequencies and intensities are within the range that is safely used for 
medical imaging,” says Wierzbicki.

To refine and validate their simulations, the team is working with 
microbiologists in Spain, who are using atomic force microscopy to observe the 
effects of ultrasound vibrations on a type of coronavirus found exclusively in 
pigs. If ultrasound can be experimentally proven to damage coronaviruses, 
including SARS-CoV-2, and if this damage can be shown to have a therapeutic 
effect, the team envisions that ultrasound, which is already used to break up 
kidney stones and to release drugs via liposomes, might be harnessed to treat 
and possibly prevent coronavirus infection. The researchers also envision that 
miniature ultrasound transducers, fitted into phones and other portable 
devices, might be capable of shielding people from the virus.

Wierzbicki stresses that there is much more research to be done to confirm 
whether ultrasound can be an effective treatment and prevention strategy 
against coronaviruses. As his team works to improve the existing simulations 
with new experimental data, he plans to zero in on the specific mechanics of 
the novel, rapidly mutating SARS-CoV-2 virus.

“We looked at the general coronavirus family, and now are looking specifically 
at the morphology and geometry of Covid-19,” Wierzbicki says. “The potential is 
something that could be great in the current critical situation.”

SHARETHIS NEWS ARTICLE ON:
   
   - Twitter
   - Facebook
   - LinkedIn
   - Reddit
   - Print

PAPER
Paper: “Effect of receptors on the resonant and transient harmonic vibrations 
of coronavirus”
RELATED LINKS
   
   - Tomasz Wierzbicki
   - Wei Li
   - Yuming Liu
   - Juner Zhu
   - Department of Mechanical Engineering
   - School of Engineering





|  |  |

 |

 |

|  | 
MIT School of Engineering |


 |

 |

 |






  

Other related posts:

  • » [pure_bullshit] Fw: Wow - Domingo Pichardo