[opendtv] EE Times: Infrastructure Focus Clouds Bull View on 6G

  • From: "Manfredi (US), Albert E" <albert.e.manfredi@xxxxxxxxxx>
  • To: "opendtv@xxxxxxxxxxxxx" <opendtv@xxxxxxxxxxxxx>
  • Date: Mon, 11 Feb 2019 03:13:58 +0000

What makes this blog interesting to me is how it deflates some of the hype 
surrounding 5G, rather than anything it says about 6G on up. To summarize, many 
of the brand new features 5G has to offer, over 4G, are not in high demand from 
consumers. These include such features and much greater link capacity for 
smartphones, and the much more robust, rapid failover, very low latency 
service. Those who might actually be demanding such new features, such as 
emergency services, might be unable to underwrite the deployments costs of 5G. 
And for V2X communications, another potential customer of 5G, there are 
competing technologies, such as 802.11p.

Even for the sub 3 GHz deployments, to achieve the 5G goals, requires a lot of 
small cells. The confused hype about "long distance propagation" is 
self-contradictory, mindless babble. The extra link capacity promised, 
especially without the benefit of very wide RF channels (true in sub 3 GHz 
channels), can only be achieved with very small cells. Long range and small 
cells is an oxymoron. (Not unlike the nonsense we had to endure about a 600 MHz 
so-called "WiFi on steroids," some time ago. Just throw words together, I 
guess, if it sells copy.)

"The deployment conundrum of 5G, seen from service providers' perspective, is 
bad enough in bands below 3GHz. For the most flexible sub-3-GHz services, 
carriers will need to provision a variety of small cells, including pico- and 
femtocells - an approach that attracted few users and lost money when it was 
tried in 2010-2015. Newer services, such as millimeter-wave long-distance 
offerings in the 11-GHz band, will require even more dedicated equipment, which 
might pull in new businesses - but only if the new commercial users emulate the 
diversity of military millimeter-wave users."

I continue to think that a good bet for 5G is the fixed service, to require 
somewhat less than the 3 hour or more house calls now needed for FiOS, plus the 
outside work required to get the fiber all the way to homes. Maybe. For mobile 
service, maybe we'll see more examples of the <wink wink> 5Ge being offered by 
AT&T, which is in fact 4G evolved in ways 4G was *always meant to evolve*. 
Small wonder that all that upgrade requires is a software update for the phones.

Bert

---------------------------------------------
https://www.eetimes.com/author.asp?section_id=36&doc_id=1334271

Infrastructure Focus Clouds Bull View on 6G 
By Loring Wirbel, 02.07.19  0 

The uncertainties for the still-nascent 6G come from two sources: Handset 
fatigue; and regional/political factors of backbone networks.

The 35-year history of digital cellular standards has followed a predictable 
trajectory since the 3G Partnership Project took the lead in standards 
development. As soon as one generation of standard reached draft form in 3GPP, 
it was time to speculate about the next generation, even if the barest 
framework of the next generation was still years away. The speculation has led 
to hype and nonsense in 4G and 5G, but for the still-nascent 6G, the decade of 
the 2020s may be too murky for even the best crystal balls to penetrate.

Uncertainty about 6G comes from two sources. First, with "handset fatigue" 
dampening end users' enthusiasm for continual upgrades to new smartphone 
models, the standard will be defined almost solely by upgrades to 
infrastructure. The soft-function trends of software-defined networking (SDN) 
and network function virtualization (NFV) will drive base station and remote 
radio head development. That could make the feature sets of soft switches and 
SDN controllers seem downright squishy.

The second source is regional and political. China's massive investments in 
backbone networks for 5G/6G could put engineers from Chinese OEMs and service 
providers solidly in the driver's seat in the next decade. When engineers from 
Huawei, ZTE, and other Chinese companies accelerated involvement in 4G/5G, 
their practical contributions to areas such as narrowband internet of things 
(IoT) were benign, if not downright beneficial. But as China envisions a more 
centrally controlled wireless network for 6G, the protocols for ad-hoc subnets 
and "just right" bandwidth may look far different from what engineers at U.S. 
and European OEMs might propose.

Some trends in infrastructure look like no-brainers. The lower costs of soft 
functionality, for one, appear to make SDN/NFV a foregone conclusion for future 
network switches and base stations.

Yet foregone conclusions can turn out to be anything but. Scaled granularity 
from small cell to picocell to femtocell was the presumptive natural path for 
5G, but the architectural model of widely proliferated femtocells hasn't found 
the expected degree of market reality. Users and service providers tolerated a 
coarser granularity at the neighborhood and single-building level because it 
was cheaper to deploy than a cell in every living room.

Similarly, ad-hoc networks characterized by dial-up bandwidth on demand would 
seem to be a given for 6G, but unexpected market demands or shifts could change 
those expectations.

NOT SO FAST

The irony in launching a 6G discussion in 2018 is that only the first round of 
5G standards, known to 3GPP as Release 15, are in draft stages of definition. 
At a minimum, additional standards packaged as Releases 16 and 17 will be 
debated through the middle of the next decade, and many analysts expect even 
more releases for 5G. That could push early implementations of 6G out to 2030 
or beyond.

In the meantime, interest in 5G deployments is flagging, for three reasons that 
should have been obvious.

First, the rise of 160-MHz channels and 4×4 multiple-input, multiple-output 
(MIMO) antennas promises theoretical data rates of up to 10 Gbits/second, 
translating to several hundred Mbits/s at the handset. Sounds great, but 
service providers have been polling users on the cost vs. benefits of such 
upgrades, and their findings cast doubt on whether such speeds are necessary 
for traditional smartphones.

The second 5G goal is serving mission-critical applications requiring low 
latency, fault tolerance, fast failover, and ultrahigh reliability. 
First-responder radio networks obviously can use such a feature set, but will 
the users of police and medical-radio subnets be willing to underwrite the 
primary costs of 5G deployment?

The final goal for 5G, IoT and autonomous-vehicle connectivity, has the 
opposite problem. Networks must support tens of thousands of low-data-rate 
nodes. Work on special networks such as Long Term Evolution (LTE) Category 0 
has been robust, but industrial and automotive networks cannot shoulder the 
deployment costs of 5G.

The deployment conundrum of 5G, seen from service providers' perspective, is 
bad enough in bands below 3GHz. For the most flexible sub-3-GHz services, 
carriers will need to provision a variety of small cells, including pico- and 
femtocells - an approach that attracted few users and lost money when it was 
tried in 2010-2015. Newer services, such as millimeter-wave long-distance 
offerings in the 11-GHz band, will require even more dedicated equipment, which 
might pull in new businesses - but only if the new commercial users emulate the 
diversity of military millimeter-wave users.

Some service providers have elected to focus on a subset of available bands. 
Verizon, for instance, has put most of its investment behind the 28-GHz and 
39-GHz bands and called them 5G. But there have been no auctions yet for the 11 
GHz of new spectrum that the U.S. Federal Communications Commission (FCC) 
defined two years ago for blocks at 28, 37, and 39 GHz. A new FCC-defined band 
at 64 to 71 GHz is even fuzzier, dwelling in a nascent state where the blocks 
are not yet fully characterized.

It's no wonder that users and carriers alike scratch their heads when network 
equipment vendors boast about the promises of 5G.
Even in markets that seem a sure bet, such as vehicle-to-vehicle (V2X) 
communications, existing LTE networks must compete with a slate of IEEE-based 
standards and proprietary offerings. Qualcomm and Huawei are promoting Cellular 
V2X (C-V2X) as a derivative of LTE Direct, the autonomous long-distance 
device-to-device (D2D) protocol introduced in 3GPP Release 12. But C-V2X must 
compete with automotive networks based on IEEE 802.11p, a Wi-Fi derivative for 
cars. The reality has deflated V2X cheerleaders' early predictions of a $40 
billion market for V2X services in 2020 and a component and hardware market 
reaching $36 billion in 2025. Such market fragmentation will likely repeat 
itself in other vertical domains.

BUILD IT AND THEY WILL COME?

Many broad areas were deliberately left out of 5G standards development, such 
as the integration of terrestrial cellular networks with satellite 
communications, the definition of ultradense cellular networks with ad-hoc 
joining features, more complex reconfigurable hardware following SDN/NFV 
models, and full immersion in wearable communication devices. From the 
standpoint of practical bandwidth, 6G proponents are talking about speeds of 1 
to 100 Gbits/s for end users, along with multi-user MIMO element scaling to 
thousands of antenna nodes.

Those feature sets are of immediate interest in the infrastructure equipment 
and network testing segments, since backbone networks will require new 
switching and transmission. In virtually all instances, however, such services 
will need to be "sold" to both service providers and end users, as usage cases 
are still in their infancy.

Some proponents suggest that 6G will primarily serve the IoT/V2X market. While 
the number of nodes will dwarf those in traditional cellular communications, we 
are back to the problem of low-bandwidth users subsidizing a network defined 
for high-bandwidth advantage, which cannot be realized through a primarily IoT 
focus. If 5G Release 16 and beyond is still blue-sky territory, then 6G may 
well occupy the realm of speculative fiction.

Because nonsense never stops, blue-sky analysts already are talking about 7G 
networks, which would enable "space roaming" (central Internet Protocol nodes 
communicating with multiple satellite networks), and even 8G, which has not yet 
been defined beyond "ultrahigh fidelity" immersion networks. But it is 
important to remember that 3GPP just released the core 5G radio protocols and 
IP network-layer translations in October, and it has yet to define true 6G 
programs. As for 7G and 8G, those proposals exist only in some 
singularity-based world defined by followers of Ray Kurzweil.

-- Loring Wirbel is an independent communications analyst with more than 30 
years' experience covering wireless and wireline communications. He has worked 
with such organizations as The Linley Group, Qualcomm Smartbook Blog, EE Times, 
and EDN's FPGA Gurus.

 
 
----------------------------------------------------------------------
You can UNSUBSCRIBE from the OpenDTV list in two ways:

- Using the UNSUBSCRIBE command in your user configuration settings at 
FreeLists.org 

- By sending a message to: opendtv-request@xxxxxxxxxxxxx with the word 
unsubscribe in the subject line.

Other related posts: