[blindza] Fw: Acoustic cues used by blind travelers

  • From: "Jacob Kruger" <jacobk@xxxxxxxxxxxxxx>
  • To: "NAPSA Blind" <blind@xxxxxxxxxxxx>, "BlindZA" <blindza@xxxxxxxxxxxxx>
  • Date: Sat, 12 May 2012 13:17:01 +0200

----- Original Message ----- Acoustic cues used by blind travelers.


By Helen J. Simon, Deborah Gilden, John Brabyn, Al Lotze and Harry Levitt.

INTRODUCTION.

Blind pedestrians use their hearing to travel safely, independently and
efficiently (a skill known as "orientation and mobility" [O&M] or "wayfinding"). Some of the auditory cues they use are clear and obvious, but others are subtle
environmental sound cues.

These auditory cues may be
- Sounds generated by an object (e.g. car with engine running)
- Sounds reflected off of an object (e.g. environmental sounds in a corridor
reflecting off walls and doors); these provide "echolocation"
- Sounds that are reduced in loudness due to blocking by an object (e.g. from a
car); these are "sound shadows"

Hearing environmental sounds and noting sound shadows help blind pedestrians
avoid obstacles, locate landmarks, make safe and straight street crossings,
maintain a straight line of travel, remain oriented, and walk down corridors
smoothly, etc. This study is an attempt to learn details about the acoustic
nature of the cues received by the two ears that might provide useful
environmental signals to blind people as they navigate. Good blind travelers
often can detect if doorways along a corridor are open or closed, and we are
interested in understanding the auditory cues that allow them to do this. To
this end we have measured the characteristics of the sounds in the ears of blind
pedestrians when traveling down a corridors with open and closed doors.

METHODS.

With the equipment shown in Figure 1, we recorded the sounds reaching the ears of eight blind subjects while they walked along indoor corridors in an office
building, with open and closed doors. These recordings were made through
miniature microphones placed in the subjects' ear canals in order to capture the sounds that actually were available to them during the short walks. The subjects also wore a video camera with a 3600field-of-view, which was mounted on their heads. The recorded video allowed us to tell the exact surroundings and location of the subject for any point in the sound recordings. In other words, it synced
the location in space with the sounds coming into the ears. Head and body
movements were also recorded with a gyroscope and accelerometer also mounted on
the head, and an additional gyroscope, which was worn on the torso.

RESULTS.

Our results reported here show the acoustic information that we have recorded
with subjects walking down a hallway past an open or closed doorway.

Figure 2 below shows the differences in the sound encountered in the hallway in the two scenarios above. The differences between the door-open and door-closed
conditions are small (a maximum of 5.5 dB at 860Hz) with the bulk of the
differences in the low frequencies (below 1500 Hz).

The low frequency dip in the ambient sound spectrum near a wall is presumably
due to reflections from the passage walls. (Sound reflections are similar to
mirror reflections. Mirror reflections increase the apparent brightness of a
room; sound reflections can increase the apparent loudness of a space as well as
change the acoustical characteristics of the sound.)

Figure 3 below shows the cross correlation of the environmental sound between the two ears for the same two conditions. (A cross-correlation is a measure of similarity of two waveforms as one of them is delayed in time by varying amounts).

Both cross correlation functions show a peak at approximately 600 microseconds (5sec), the amount of time it takes for a sound located to one side of the head
to travel from one ear to the other. There is a higher (better) correlation
for the closed-door condition, but a much broader peak (a wide range of time delays give a nearly equal match). This result indicates sound reflects from the
closed door giving partial correlations over a range of time delays. The
open-door correlation function has a sharper peak, but less overall
correlation relative to the closed-door condition. This indicates that the
correlation is best over a narrower range of time delays. This result is
consistent with a lack of reflections from the closed door and/or sounds coming
out of the adjacent room.

CONCLUSIONS

These data shown demonstrate the usefulness of cross correlation between the
ears in the analysis of wayfinding cues; while the intensity vs. frequency
differences are small (Fig 1) the differences between the cross correlation
functions are quite large (Fig 2). Although the ear is very sensitive to
interaural differences, previous research did not measure these differences. The
results suggest that blind pedestrians use these differences in the sound
reaching the two ears to help with foot travel. The differences in intensity vs. frequency at low frequencies confirm previous work regarding ambient room noise
near a wall and an opening (Ashmead and Wall, 1999).

Implications of these findings for a visually impaired person with a hearing
loss are that (1) hearing loss can be expected to interfere with safe,
efficient, and effective foot travel and (2) special purpose hearing aids with
low frequency amplification that do not distort time differences between the
ears may be needed to preserve the auditory cues used by good travelers. Further study from this laboratory will test the importance of these cues with normally
sighted and blind subjects.

REFERENCES.

Ashmead DH, Wall RS. Auditory perception of walls via spectral variations in the
ambient sound field. Journal of rehabilitation research and development.
1999;36(4):313-22.

Source URL:
http://www.acoustics.org/press/163rd/Simon_5aPP18.html

----------
To send a message to the list, send any message to blindza@xxxxxxxxxxxxx
----------
To unsubscribe from this list, send a message to blindza-request@xxxxxxxxxxxxx 
with 'unsubscribe' in the subject line
---
The 'homepage' for this list is at http://www.blindza.co.za

Other related posts:

  • » [blindza] Fw: Acoustic cues used by blind travelers - Jacob Kruger