[haiku-commits] r36780 - in haiku/trunk: headers/libs/zlib src/libs/zlib

  • From: korli@xxxxxxxxxxxxxxxx
  • To: haiku-commits@xxxxxxxxxxxxx
  • Date: Sun, 9 May 2010 17:28:01 +0200 (CEST)

Author: korli
Date: 2010-05-09 17:28:00 +0200 (Sun, 09 May 2010)
New Revision: 36780
Changeset: http://dev.haiku-os.org/changeset/36780/haiku

Added:
   haiku/trunk/src/libs/zlib/gzclose.c
   haiku/trunk/src/libs/zlib/gzguts.h
   haiku/trunk/src/libs/zlib/gzlib.c
   haiku/trunk/src/libs/zlib/gzread.c
   haiku/trunk/src/libs/zlib/gzwrite.c
Removed:
   haiku/trunk/src/libs/zlib/gzio.c
Modified:
   haiku/trunk/headers/libs/zlib/zconf.h
   haiku/trunk/headers/libs/zlib/zlib.h
   haiku/trunk/src/libs/zlib/Jamfile
   haiku/trunk/src/libs/zlib/README
   haiku/trunk/src/libs/zlib/adler32.c
   haiku/trunk/src/libs/zlib/compress.c
   haiku/trunk/src/libs/zlib/crc32.c
   haiku/trunk/src/libs/zlib/deflate.c
   haiku/trunk/src/libs/zlib/deflate.h
   haiku/trunk/src/libs/zlib/example.c
   haiku/trunk/src/libs/zlib/infback.c
   haiku/trunk/src/libs/zlib/inffast.c
   haiku/trunk/src/libs/zlib/inffast.h
   haiku/trunk/src/libs/zlib/inflate.c
   haiku/trunk/src/libs/zlib/inflate.h
   haiku/trunk/src/libs/zlib/inftrees.c
   haiku/trunk/src/libs/zlib/inftrees.h
   haiku/trunk/src/libs/zlib/minigzip.c
   haiku/trunk/src/libs/zlib/trees.c
   haiku/trunk/src/libs/zlib/trees.h
   haiku/trunk/src/libs/zlib/uncompr.c
   haiku/trunk/src/libs/zlib/zconf.h
   haiku/trunk/src/libs/zlib/zlib.h
   haiku/trunk/src/libs/zlib/zutil.c
   haiku/trunk/src/libs/zlib/zutil.h
Log:
merge zlib 1.2.5 into trunk


Modified: haiku/trunk/headers/libs/zlib/zconf.h
===================================================================
--- haiku/trunk/headers/libs/zlib/zconf.h       2010-05-09 13:27:01 UTC (rev 
36779)
+++ haiku/trunk/headers/libs/zlib/zconf.h       2010-05-09 15:28:00 UTC (rev 
36780)
@@ -1,9 +1,9 @@
 /* zconf.h -- configuration of the zlib compression library
- * Copyright (C) 1995-2005 Jean-loup Gailly.
+ * Copyright (C) 1995-2010 Jean-loup Gailly.
  * For conditions of distribution and use, see copyright notice in zlib.h
  */
 
-/* @(#) $Id: zconf.h 28305 2008-10-23 21:46:26Z bonefish $ */
+/* @(#) $Id$ */
 
 #ifndef ZCONF_H
 #define ZCONF_H
@@ -11,52 +11,124 @@
 /*
  * If you *really* need a unique prefix for all types and library functions,
  * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it.
+ * Even better than compiling with -DZ_PREFIX would be to use configure to set
+ * this permanently in zconf.h using "./configure --zprefix".
  */
-#ifdef Z_PREFIX
-#  define deflateInit_          z_deflateInit_
+#ifdef Z_PREFIX     /* may be set to #if 1 by ./configure */
+
+/* all linked symbols */
+#  define _dist_code            z__dist_code
+#  define _length_code          z__length_code
+#  define _tr_align             z__tr_align
+#  define _tr_flush_block       z__tr_flush_block
+#  define _tr_init              z__tr_init
+#  define _tr_stored_block      z__tr_stored_block
+#  define _tr_tally             z__tr_tally
+#  define adler32               z_adler32
+#  define adler32_combine       z_adler32_combine
+#  define adler32_combine64     z_adler32_combine64
+#  define compress              z_compress
+#  define compress2             z_compress2
+#  define compressBound         z_compressBound
+#  define crc32                 z_crc32
+#  define crc32_combine         z_crc32_combine
+#  define crc32_combine64       z_crc32_combine64
 #  define deflate               z_deflate
+#  define deflateBound          z_deflateBound
+#  define deflateCopy           z_deflateCopy
 #  define deflateEnd            z_deflateEnd
-#  define inflateInit_          z_inflateInit_
-#  define inflate               z_inflate
-#  define inflateEnd            z_inflateEnd
 #  define deflateInit2_         z_deflateInit2_
-#  define deflateSetDictionary  z_deflateSetDictionary
-#  define deflateCopy           z_deflateCopy
-#  define deflateReset          z_deflateReset
+#  define deflateInit_          z_deflateInit_
 #  define deflateParams         z_deflateParams
-#  define deflateBound          z_deflateBound
 #  define deflatePrime          z_deflatePrime
+#  define deflateReset          z_deflateReset
+#  define deflateSetDictionary  z_deflateSetDictionary
+#  define deflateSetHeader      z_deflateSetHeader
+#  define deflateTune           z_deflateTune
+#  define deflate_copyright     z_deflate_copyright
+#  define get_crc_table         z_get_crc_table
+#  define gz_error              z_gz_error
+#  define gz_intmax             z_gz_intmax
+#  define gz_strwinerror        z_gz_strwinerror
+#  define gzbuffer              z_gzbuffer
+#  define gzclearerr            z_gzclearerr
+#  define gzclose               z_gzclose
+#  define gzclose_r             z_gzclose_r
+#  define gzclose_w             z_gzclose_w
+#  define gzdirect              z_gzdirect
+#  define gzdopen               z_gzdopen
+#  define gzeof                 z_gzeof
+#  define gzerror               z_gzerror
+#  define gzflush               z_gzflush
+#  define gzgetc                z_gzgetc
+#  define gzgets                z_gzgets
+#  define gzoffset              z_gzoffset
+#  define gzoffset64            z_gzoffset64
+#  define gzopen                z_gzopen
+#  define gzopen64              z_gzopen64
+#  define gzprintf              z_gzprintf
+#  define gzputc                z_gzputc
+#  define gzputs                z_gzputs
+#  define gzread                z_gzread
+#  define gzrewind              z_gzrewind
+#  define gzseek                z_gzseek
+#  define gzseek64              z_gzseek64
+#  define gzsetparams           z_gzsetparams
+#  define gztell                z_gztell
+#  define gztell64              z_gztell64
+#  define gzungetc              z_gzungetc
+#  define gzwrite               z_gzwrite
+#  define inflate               z_inflate
+#  define inflateBack           z_inflateBack
+#  define inflateBackEnd        z_inflateBackEnd
+#  define inflateBackInit_      z_inflateBackInit_
+#  define inflateCopy           z_inflateCopy
+#  define inflateEnd            z_inflateEnd
+#  define inflateGetHeader      z_inflateGetHeader
 #  define inflateInit2_         z_inflateInit2_
+#  define inflateInit_          z_inflateInit_
+#  define inflateMark           z_inflateMark
+#  define inflatePrime          z_inflatePrime
+#  define inflateReset          z_inflateReset
+#  define inflateReset2         z_inflateReset2
 #  define inflateSetDictionary  z_inflateSetDictionary
 #  define inflateSync           z_inflateSync
 #  define inflateSyncPoint      z_inflateSyncPoint
-#  define inflateCopy           z_inflateCopy
-#  define inflateReset          z_inflateReset
-#  define inflateBack           z_inflateBack
-#  define inflateBackEnd        z_inflateBackEnd
-#  define compress              z_compress
-#  define compress2             z_compress2
-#  define compressBound         z_compressBound
+#  define inflateUndermine      z_inflateUndermine
+#  define inflate_copyright     z_inflate_copyright
+#  define inflate_fast          z_inflate_fast
+#  define inflate_table         z_inflate_table
 #  define uncompress            z_uncompress
-#  define adler32               z_adler32
-#  define crc32                 z_crc32
-#  define get_crc_table         z_get_crc_table
 #  define zError                z_zError
+#  define zcalloc               z_zcalloc
+#  define zcfree                z_zcfree
+#  define zlibCompileFlags      z_zlibCompileFlags
+#  define zlibVersion           z_zlibVersion
 
+/* all zlib typedefs in zlib.h and zconf.h */
+#  define Byte                  z_Byte
+#  define Bytef                 z_Bytef
 #  define alloc_func            z_alloc_func
+#  define charf                 z_charf
 #  define free_func             z_free_func
+#  define gzFile                z_gzFile
+#  define gz_header             z_gz_header
+#  define gz_headerp            z_gz_headerp
 #  define in_func               z_in_func
+#  define intf                  z_intf
 #  define out_func              z_out_func
-#  define Byte                  z_Byte
 #  define uInt                  z_uInt
+#  define uIntf                 z_uIntf
 #  define uLong                 z_uLong
-#  define Bytef                 z_Bytef
-#  define charf                 z_charf
-#  define intf                  z_intf
-#  define uIntf                 z_uIntf
 #  define uLongf                z_uLongf
+#  define voidp                 z_voidp
+#  define voidpc                z_voidpc
 #  define voidpf                z_voidpf
-#  define voidp                 z_voidp
+
+/* all zlib structs in zlib.h and zconf.h */
+#  define gz_header_s           z_gz_header_s
+#  define internal_state        z_internal_state
+
 #endif
 
 #if defined(__MSDOS__) && !defined(MSDOS)
@@ -231,7 +303,7 @@
 #  endif
 #endif
 
-#if (defined(__BEOS__) || defined(__HAIKU__))
+#if (defined (__BEOS__) || defined(__HAIKU__))
 #  ifdef ZLIB_DLL
 #    ifdef ZLIB_INTERNAL
 #      define ZEXPORT   __declspec(dllexport)
@@ -284,49 +356,73 @@
    typedef Byte       *voidp;
 #endif
 
-#if 0           /* HAVE_UNISTD_H -- this line is updated by ./configure */
-#  include <sys/types.h> /* for off_t */
-#  include <unistd.h>    /* for SEEK_* and off_t */
+#if 1    /* was set to #if 1 by ./configure */
+#  define Z_HAVE_UNISTD_H
+#endif
+
+#ifdef STDC
+#  include <sys/types.h>    /* for off_t */
+#endif
+
+/* a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and
+ * "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even
+ * though the former does not conform to the LFS document), but considering
+ * both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as
+ * equivalently requesting no 64-bit operations
+ */
+#if -_LARGEFILE64_SOURCE - -1 == 1
+#  undef _LARGEFILE64_SOURCE
+#endif
+
+#if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE)
+#  include <unistd.h>       /* for SEEK_* and off_t */
 #  ifdef VMS
-#    include <unixio.h>   /* for off_t */
+#    include <unixio.h>     /* for off_t */
 #  endif
-#  define z_off_t off_t
+#  ifndef z_off_t
+#    define z_off_t off_t
+#  endif
 #endif
+
 #ifndef SEEK_SET
 #  define SEEK_SET        0       /* Seek from beginning of file.  */
 #  define SEEK_CUR        1       /* Seek from current position.  */
 #  define SEEK_END        2       /* Set file pointer to EOF plus "offset" */
 #endif
+
 #ifndef z_off_t
 #  define z_off_t long
 #endif
 
+#if defined(_LARGEFILE64_SOURCE) && _LFS64_LARGEFILE-0
+#  define z_off64_t off64_t
+#else
+#  define z_off64_t z_off_t
+#endif
+
 #if defined(__OS400__)
 #  define NO_vsnprintf
 #endif
 
 #if defined(__MVS__)
 #  define NO_vsnprintf
-#  ifdef FAR
-#    undef FAR
-#  endif
 #endif
 
 /* MVS linker does not support external names larger than 8 bytes */
 #if defined(__MVS__)
-#   pragma map(deflateInit_,"DEIN")
-#   pragma map(deflateInit2_,"DEIN2")
-#   pragma map(deflateEnd,"DEEND")
-#   pragma map(deflateBound,"DEBND")
-#   pragma map(inflateInit_,"ININ")
-#   pragma map(inflateInit2_,"ININ2")
-#   pragma map(inflateEnd,"INEND")
-#   pragma map(inflateSync,"INSY")
-#   pragma map(inflateSetDictionary,"INSEDI")
-#   pragma map(compressBound,"CMBND")
-#   pragma map(inflate_table,"INTABL")
-#   pragma map(inflate_fast,"INFA")
-#   pragma map(inflate_copyright,"INCOPY")
+  #pragma map(deflateInit_,"DEIN")
+  #pragma map(deflateInit2_,"DEIN2")
+  #pragma map(deflateEnd,"DEEND")
+  #pragma map(deflateBound,"DEBND")
+  #pragma map(inflateInit_,"ININ")
+  #pragma map(inflateInit2_,"ININ2")
+  #pragma map(inflateEnd,"INEND")
+  #pragma map(inflateSync,"INSY")
+  #pragma map(inflateSetDictionary,"INSEDI")
+  #pragma map(compressBound,"CMBND")
+  #pragma map(inflate_table,"INTABL")
+  #pragma map(inflate_fast,"INFA")
+  #pragma map(inflate_copyright,"INCOPY")
 #endif
 
 #endif /* ZCONF_H */

Modified: haiku/trunk/headers/libs/zlib/zlib.h
===================================================================
--- haiku/trunk/headers/libs/zlib/zlib.h        2010-05-09 13:27:01 UTC (rev 
36779)
+++ haiku/trunk/headers/libs/zlib/zlib.h        2010-05-09 15:28:00 UTC (rev 
36780)
@@ -1,7 +1,7 @@
 /* zlib.h -- interface of the 'zlib' general purpose compression library
-  version 1.2.3, July 18th, 2005
+  version 1.2.5, April 19th, 2010
 
-  Copyright (C) 1995-2005 Jean-loup Gailly and Mark Adler
+  Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
 
   This software is provided 'as-is', without any express or implied
   warranty.  In no event will the authors be held liable for any damages
@@ -37,41 +37,44 @@
 extern "C" {
 #endif
 
-#define ZLIB_VERSION "1.2.3"
-#define ZLIB_VERNUM 0x1230
+#define ZLIB_VERSION "1.2.5"
+#define ZLIB_VERNUM 0x1250
+#define ZLIB_VER_MAJOR 1
+#define ZLIB_VER_MINOR 2
+#define ZLIB_VER_REVISION 5
+#define ZLIB_VER_SUBREVISION 0
 
 /*
-     The 'zlib' compression library provides in-memory compression and
-  decompression functions, including integrity checks of the uncompressed
-  data.  This version of the library supports only one compression method
-  (deflation) but other algorithms will be added later and will have the same
-  stream interface.
+    The 'zlib' compression library provides in-memory compression and
+  decompression functions, including integrity checks of the uncompressed data.
+  This version of the library supports only one compression method (deflation)
+  but other algorithms will be added later and will have the same stream
+  interface.
 
-     Compression can be done in a single step if the buffers are large
-  enough (for example if an input file is mmap'ed), or can be done by
-  repeated calls of the compression function.  In the latter case, the
-  application must provide more input and/or consume the output
+    Compression can be done in a single step if the buffers are large enough,
+  or can be done by repeated calls of the compression function.  In the latter
+  case, the application must provide more input and/or consume the output
   (providing more output space) before each call.
 
-     The compressed data format used by default by the in-memory functions is
+    The compressed data format used by default by the in-memory functions is
   the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
   around a deflate stream, which is itself documented in RFC 1951.
 
-     The library also supports reading and writing files in gzip (.gz) format
+    The library also supports reading and writing files in gzip (.gz) format
   with an interface similar to that of stdio using the functions that start
   with "gz".  The gzip format is different from the zlib format.  gzip is a
   gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
 
-     This library can optionally read and write gzip streams in memory as well.
+    This library can optionally read and write gzip streams in memory as well.
 
-     The zlib format was designed to be compact and fast for use in memory
+    The zlib format was designed to be compact and fast for use in memory
   and on communications channels.  The gzip format was designed for single-
   file compression on file systems, has a larger header than zlib to maintain
   directory information, and uses a different, slower check method than zlib.
 
-     The library does not install any signal handler. The decoder checks
-  the consistency of the compressed data, so the library should never
-  crash even in case of corrupted input.
+    The library does not install any signal handler.  The decoder checks
+  the consistency of the compressed data, so the library should never crash
+  even in case of corrupted input.
 */
 
 typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
@@ -126,45 +129,45 @@
 typedef gz_header FAR *gz_headerp;
 
 /*
-   The application must update next_in and avail_in when avail_in has
-   dropped to zero. It must update next_out and avail_out when avail_out
-   has dropped to zero. The application must initialize zalloc, zfree and
-   opaque before calling the init function. All other fields are set by the
-   compression library and must not be updated by the application.
+     The application must update next_in and avail_in when avail_in has dropped
+   to zero.  It must update next_out and avail_out when avail_out has dropped
+   to zero.  The application must initialize zalloc, zfree and opaque before
+   calling the init function.  All other fields are set by the compression
+   library and must not be updated by the application.
 
-   The opaque value provided by the application will be passed as the first
-   parameter for calls of zalloc and zfree. This can be useful for custom
-   memory management. The compression library attaches no meaning to the
+     The opaque value provided by the application will be passed as the first
+   parameter for calls of zalloc and zfree.  This can be useful for custom
+   memory management.  The compression library attaches no meaning to the
    opaque value.
 
-   zalloc must return Z_NULL if there is not enough memory for the object.
+     zalloc must return Z_NULL if there is not enough memory for the object.
    If zlib is used in a multi-threaded application, zalloc and zfree must be
    thread safe.
 
-   On 16-bit systems, the functions zalloc and zfree must be able to allocate
-   exactly 65536 bytes, but will not be required to allocate more than this
-   if the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS,
-   pointers returned by zalloc for objects of exactly 65536 bytes *must*
-   have their offset normalized to zero. The default allocation function
-   provided by this library ensures this (see zutil.c). To reduce memory
-   requirements and avoid any allocation of 64K objects, at the expense of
-   compression ratio, compile the library with -DMAX_WBITS=14 (see zconf.h).
+     On 16-bit systems, the functions zalloc and zfree must be able to allocate
+   exactly 65536 bytes, but will not be required to allocate more than this if
+   the symbol MAXSEG_64K is defined (see zconf.h).  WARNING: On MSDOS, pointers
+   returned by zalloc for objects of exactly 65536 bytes *must* have their
+   offset normalized to zero.  The default allocation function provided by this
+   library ensures this (see zutil.c).  To reduce memory requirements and avoid
+   any allocation of 64K objects, at the expense of compression ratio, compile
+   the library with -DMAX_WBITS=14 (see zconf.h).
 
-   The fields total_in and total_out can be used for statistics or
-   progress reports. After compression, total_in holds the total size of
-   the uncompressed data and may be saved for use in the decompressor
-   (particularly if the decompressor wants to decompress everything in
-   a single step).
+     The fields total_in and total_out can be used for statistics or progress
+   reports.  After compression, total_in holds the total size of the
+   uncompressed data and may be saved for use in the decompressor (particularly
+   if the decompressor wants to decompress everything in a single step).
 */
 
                         /* constants */
 
 #define Z_NO_FLUSH      0
-#define Z_PARTIAL_FLUSH 1 /* will be removed, use Z_SYNC_FLUSH instead */
+#define Z_PARTIAL_FLUSH 1
 #define Z_SYNC_FLUSH    2
 #define Z_FULL_FLUSH    3
 #define Z_FINISH        4
 #define Z_BLOCK         5
+#define Z_TREES         6
 /* Allowed flush values; see deflate() and inflate() below for details */
 
 #define Z_OK            0
@@ -176,8 +179,8 @@
 #define Z_MEM_ERROR    (-4)
 #define Z_BUF_ERROR    (-5)
 #define Z_VERSION_ERROR (-6)
-/* Return codes for the compression/decompression functions. Negative
- * values are errors, positive values are used for special but normal events.
+/* Return codes for the compression/decompression functions. Negative values
+ * are errors, positive values are used for special but normal events.
  */
 
 #define Z_NO_COMPRESSION         0
@@ -207,119 +210,140 @@
 #define zlib_version zlibVersion()
 /* for compatibility with versions < 1.0.2 */
 
+
                         /* basic functions */
 
 ZEXTERN const char * ZEXPORT zlibVersion OF((void));
 /* The application can compare zlibVersion and ZLIB_VERSION for consistency.
-   If the first character differs, the library code actually used is
-   not compatible with the zlib.h header file used by the application.
-   This check is automatically made by deflateInit and inflateInit.
+   If the first character differs, the library code actually used is not
+   compatible with the zlib.h header file used by the application.  This check
+   is automatically made by deflateInit and inflateInit.
  */
 
 /*
 ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
 
-     Initializes the internal stream state for compression. The fields
-   zalloc, zfree and opaque must be initialized before by the caller.
-   If zalloc and zfree are set to Z_NULL, deflateInit updates them to
-   use default allocation functions.
+     Initializes the internal stream state for compression.  The fields
+   zalloc, zfree and opaque must be initialized before by the caller.  If
+   zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
+   allocation functions.
 
      The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
-   1 gives best speed, 9 gives best compression, 0 gives no compression at
-   all (the input data is simply copied a block at a time).
-   Z_DEFAULT_COMPRESSION requests a default compromise between speed and
-   compression (currently equivalent to level 6).
+   1 gives best speed, 9 gives best compression, 0 gives no compression at all
+   (the input data is simply copied a block at a time).  Z_DEFAULT_COMPRESSION
+   requests a default compromise between speed and compression (currently
+   equivalent to level 6).
 
-     deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not
-   enough memory, Z_STREAM_ERROR if level is not a valid compression level,
+     deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
+   memory, Z_STREAM_ERROR if level is not a valid compression level, or
    Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
-   with the version assumed by the caller (ZLIB_VERSION).
-   msg is set to null if there is no error message.  deflateInit does not
-   perform any compression: this will be done by deflate().
+   with the version assumed by the caller (ZLIB_VERSION).  msg is set to null
+   if there is no error message.  deflateInit does not perform any compression:
+   this will be done by deflate().
 */
 
 
 ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
 /*
     deflate compresses as much data as possible, and stops when the input
-  buffer becomes empty or the output buffer becomes full. It may introduce some
-  output latency (reading input without producing any output) except when
+  buffer becomes empty or the output buffer becomes full.  It may introduce
+  some output latency (reading input without producing any output) except when
   forced to flush.
 
-    The detailed semantics are as follows. deflate performs one or both of the
+    The detailed semantics are as follows.  deflate performs one or both of the
   following actions:
 
   - Compress more input starting at next_in and update next_in and avail_in
-    accordingly. If not all input can be processed (because there is not
+    accordingly.  If not all input can be processed (because there is not
     enough room in the output buffer), next_in and avail_in are updated and
     processing will resume at this point for the next call of deflate().
 
   - Provide more output starting at next_out and update next_out and avail_out
-    accordingly. This action is forced if the parameter flush is non zero.
+    accordingly.  This action is forced if the parameter flush is non zero.
     Forcing flush frequently degrades the compression ratio, so this parameter
-    should be set only when necessary (in interactive applications).
-    Some output may be provided even if flush is not set.
+    should be set only when necessary (in interactive applications).  Some
+    output may be provided even if flush is not set.
 
-  Before the call of deflate(), the application should ensure that at least
-  one of the actions is possible, by providing more input and/or consuming
-  more output, and updating avail_in or avail_out accordingly; avail_out
-  should never be zero before the call. The application can consume the
-  compressed output when it wants, for example when the output buffer is full
-  (avail_out == 0), or after each call of deflate(). If deflate returns Z_OK
-  and with zero avail_out, it must be called again after making room in the
-  output buffer because there might be more output pending.
+    Before the call of deflate(), the application should ensure that at least
+  one of the actions is possible, by providing more input and/or consuming more
+  output, and updating avail_in or avail_out accordingly; avail_out should
+  never be zero before the call.  The application can consume the compressed
+  output when it wants, for example when the output buffer is full (avail_out
+  == 0), or after each call of deflate().  If deflate returns Z_OK and with
+  zero avail_out, it must be called again after making room in the output
+  buffer because there might be more output pending.
 
     Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
-  decide how much data to accumualte before producing output, in order to
+  decide how much data to accumulate before producing output, in order to
   maximize compression.
 
     If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
   flushed to the output buffer and the output is aligned on a byte boundary, so
-  that the decompressor can get all input data available so far. (In particular
-  avail_in is zero after the call if enough output space has been provided
-  before the call.)  Flushing may degrade compression for some compression
-  algorithms and so it should be used only when necessary.
+  that the decompressor can get all input data available so far.  (In
+  particular avail_in is zero after the call if enough output space has been
+  provided before the call.) Flushing may degrade compression for some
+  compression algorithms and so it should be used only when necessary.  This
+  completes the current deflate block and follows it with an empty stored block
+  that is three bits plus filler bits to the next byte, followed by four bytes
+  (00 00 ff ff).
 
+    If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the
+  output buffer, but the output is not aligned to a byte boundary.  All of the
+  input data so far will be available to the decompressor, as for Z_SYNC_FLUSH.
+  This completes the current deflate block and follows it with an empty fixed
+  codes block that is 10 bits long.  This assures that enough bytes are output
+  in order for the decompressor to finish the block before the empty fixed code
+  block.
+
+    If flush is set to Z_BLOCK, a deflate block is completed and emitted, as
+  for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to
+  seven bits of the current block are held to be written as the next byte after
+  the next deflate block is completed.  In this case, the decompressor may not
+  be provided enough bits at this point in order to complete decompression of
+  the data provided so far to the compressor.  It may need to wait for the next
+  block to be emitted.  This is for advanced applications that need to control
+  the emission of deflate blocks.
+
     If flush is set to Z_FULL_FLUSH, all output is flushed as with
   Z_SYNC_FLUSH, and the compression state is reset so that decompression can
   restart from this point if previous compressed data has been damaged or if
-  random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
+  random access is desired.  Using Z_FULL_FLUSH too often can seriously degrade
   compression.
 
     If deflate returns with avail_out == 0, this function must be called again
   with the same value of the flush parameter and more output space (updated
   avail_out), until the flush is complete (deflate returns with non-zero
-  avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
+  avail_out).  In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
   avail_out is greater than six to avoid repeated flush markers due to
   avail_out == 0 on return.
 
     If the parameter flush is set to Z_FINISH, pending input is processed,
-  pending output is flushed and deflate returns with Z_STREAM_END if there
-  was enough output space; if deflate returns with Z_OK, this function must be
+  pending output is flushed and deflate returns with Z_STREAM_END if there was
+  enough output space; if deflate returns with Z_OK, this function must be
   called again with Z_FINISH and more output space (updated avail_out) but no
-  more input data, until it returns with Z_STREAM_END or an error. After
-  deflate has returned Z_STREAM_END, the only possible operations on the
-  stream are deflateReset or deflateEnd.
+  more input data, until it returns with Z_STREAM_END or an error.  After
+  deflate has returned Z_STREAM_END, the only possible operations on the stream
+  are deflateReset or deflateEnd.
 
     Z_FINISH can be used immediately after deflateInit if all the compression
-  is to be done in a single step. In this case, avail_out must be at least
-  the value returned by deflateBound (see below). If deflate does not return
+  is to be done in a single step.  In this case, avail_out must be at least the
+  value returned by deflateBound (see below).  If deflate does not return
   Z_STREAM_END, then it must be called again as described above.
 
     deflate() sets strm->adler to the adler32 checksum of all input read
   so far (that is, total_in bytes).
 
     deflate() may update strm->data_type if it can make a good guess about
-  the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered
-  binary. This field is only for information purposes and does not affect
-  the compression algorithm in any manner.
+  the input data type (Z_BINARY or Z_TEXT).  In doubt, the data is considered
+  binary.  This field is only for information purposes and does not affect the
+  compression algorithm in any manner.
 
     deflate() returns Z_OK if some progress has been made (more input
   processed or more output produced), Z_STREAM_END if all input has been
   consumed and all output has been produced (only when flush is set to
   Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
-  if next_in or next_out was NULL), Z_BUF_ERROR if no progress is possible
-  (for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not
+  if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible
+  (for example avail_in or avail_out was zero).  Note that Z_BUF_ERROR is not
   fatal, and deflate() can be called again with more input and more output
   space to continue compressing.
 */
@@ -328,13 +352,13 @@
 ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
 /*
      All dynamically allocated data structures for this stream are freed.
-   This function discards any unprocessed input and does not flush any
-   pending output.
+   This function discards any unprocessed input and does not flush any pending
+   output.
 
      deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
    stream state was inconsistent, Z_DATA_ERROR if the stream was freed
-   prematurely (some input or output was discarded). In the error case,
-   msg may be set but then points to a static string (which must not be
+   prematurely (some input or output was discarded).  In the error case, msg
+   may be set but then points to a static string (which must not be
    deallocated).
 */
 
@@ -342,10 +366,10 @@
 /*
 ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
 
-     Initializes the internal stream state for decompression. The fields
+     Initializes the internal stream state for decompression.  The fields
    next_in, avail_in, zalloc, zfree and opaque must be initialized before by
-   the caller. If next_in is not Z_NULL and avail_in is large enough (the exact
-   value depends on the compression method), inflateInit determines the
+   the caller.  If next_in is not Z_NULL and avail_in is large enough (the
+   exact value depends on the compression method), inflateInit determines the
    compression method from the zlib header and allocates all data structures
    accordingly; otherwise the allocation will be deferred to the first call of
    inflate.  If zalloc and zfree are set to Z_NULL, inflateInit updates them to
@@ -353,95 +377,108 @@
 
      inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
    memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
-   version assumed by the caller.  msg is set to null if there is no error
-   message. inflateInit does not perform any decompression apart from reading
-   the zlib header if present: this will be done by inflate().  (So next_in and
-   avail_in may be modified, but next_out and avail_out are unchanged.)
+   version assumed by the caller, or Z_STREAM_ERROR if the parameters are
+   invalid, such as a null pointer to the structure.  msg is set to null if
+   there is no error message.  inflateInit does not perform any decompression
+   apart from possibly reading the zlib header if present: actual decompression
+   will be done by inflate().  (So next_in and avail_in may be modified, but
+   next_out and avail_out are unused and unchanged.) The current implementation
+   of inflateInit() does not process any header information -- that is deferred
+   until inflate() is called.
 */
 
 
 ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
 /*
     inflate decompresses as much data as possible, and stops when the input
-  buffer becomes empty or the output buffer becomes full. It may introduce
+  buffer becomes empty or the output buffer becomes full.  It may introduce
   some output latency (reading input without producing any output) except when
   forced to flush.
 
-  The detailed semantics are as follows. inflate performs one or both of the
+  The detailed semantics are as follows.  inflate performs one or both of the
   following actions:
 
   - Decompress more input starting at next_in and update next_in and avail_in
-    accordingly. If not all input can be processed (because there is not
-    enough room in the output buffer), next_in is updated and processing
-    will resume at this point for the next call of inflate().
+    accordingly.  If not all input can be processed (because there is not
+    enough room in the output buffer), next_in is updated and processing will
+    resume at this point for the next call of inflate().
 
   - Provide more output starting at next_out and update next_out and avail_out
-    accordingly.  inflate() provides as much output as possible, until there
-    is no more input data or no more space in the output buffer (see below
-    about the flush parameter).
+    accordingly.  inflate() provides as much output as possible, until there is
+    no more input data or no more space in the output buffer (see below about
+    the flush parameter).
 
-  Before the call of inflate(), the application should ensure that at least
-  one of the actions is possible, by providing more input and/or consuming
-  more output, and updating the next_* and avail_* values accordingly.
-  The application can consume the uncompressed output when it wants, for
-  example when the output buffer is full (avail_out == 0), or after each
-  call of inflate(). If inflate returns Z_OK and with zero avail_out, it
-  must be called again after making room in the output buffer because there
-  might be more output pending.
+    Before the call of inflate(), the application should ensure that at least
+  one of the actions is possible, by providing more input and/or consuming more
+  output, and updating the next_* and avail_* values accordingly.  The
+  application can consume the uncompressed output when it wants, for example
+  when the output buffer is full (avail_out == 0), or after each call of
+  inflate().  If inflate returns Z_OK and with zero avail_out, it must be
+  called again after making room in the output buffer because there might be
+  more output pending.
 
-    The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH,
-  Z_FINISH, or Z_BLOCK. Z_SYNC_FLUSH requests that inflate() flush as much
-  output as possible to the output buffer. Z_BLOCK requests that inflate() stop
-  if and when it gets to the next deflate block boundary. When decoding the
-  zlib or gzip format, this will cause inflate() to return immediately after
-  the header and before the first block. When doing a raw inflate, inflate()
-  will go ahead and process the first block, and will return when it gets to
-  the end of that block, or when it runs out of data.
+    The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH,
+  Z_BLOCK, or Z_TREES.  Z_SYNC_FLUSH requests that inflate() flush as much
+  output as possible to the output buffer.  Z_BLOCK requests that inflate()
+  stop if and when it gets to the next deflate block boundary.  When decoding
+  the zlib or gzip format, this will cause inflate() to return immediately
+  after the header and before the first block.  When doing a raw inflate,
+  inflate() will go ahead and process the first block, and will return when it
+  gets to the end of that block, or when it runs out of data.
 
     The Z_BLOCK option assists in appending to or combining deflate streams.
   Also to assist in this, on return inflate() will set strm->data_type to the
-  number of unused bits in the last byte taken from strm->next_in, plus 64
-  if inflate() is currently decoding the last block in the deflate stream,
-  plus 128 if inflate() returned immediately after decoding an end-of-block
-  code or decoding the complete header up to just before the first byte of the
-  deflate stream. The end-of-block will not be indicated until all of the
-  uncompressed data from that block has been written to strm->next_out.  The
-  number of unused bits may in general be greater than seven, except when
-  bit 7 of data_type is set, in which case the number of unused bits will be
-  less than eight.
+  number of unused bits in the last byte taken from strm->next_in, plus 64 if
+  inflate() is currently decoding the last block in the deflate stream, plus
+  128 if inflate() returned immediately after decoding an end-of-block code or
+  decoding the complete header up to just before the first byte of the deflate
+  stream.  The end-of-block will not be indicated until all of the uncompressed
+  data from that block has been written to strm->next_out.  The number of
+  unused bits may in general be greater than seven, except when bit 7 of
+  data_type is set, in which case the number of unused bits will be less than
+  eight.  data_type is set as noted here every time inflate() returns for all
+  flush options, and so can be used to determine the amount of currently
+  consumed input in bits.
 
+    The Z_TREES option behaves as Z_BLOCK does, but it also returns when the
+  end of each deflate block header is reached, before any actual data in that
+  block is decoded.  This allows the caller to determine the length of the
+  deflate block header for later use in random access within a deflate block.
+  256 is added to the value of strm->data_type when inflate() returns
+  immediately after reaching the end of the deflate block header.
+
     inflate() should normally be called until it returns Z_STREAM_END or an
-  error. However if all decompression is to be performed in a single step
-  (a single call of inflate), the parameter flush should be set to
-  Z_FINISH. In this case all pending input is processed and all pending
-  output is flushed; avail_out must be large enough to hold all the
-  uncompressed data. (The size of the uncompressed data may have been saved
-  by the compressor for this purpose.) The next operation on this stream must
-  be inflateEnd to deallocate the decompression state. The use of Z_FINISH
-  is never required, but can be used to inform inflate that a faster approach
-  may be used for the single inflate() call.
+  error.  However if all decompression is to be performed in a single step (a
+  single call of inflate), the parameter flush should be set to Z_FINISH.  In
+  this case all pending input is processed and all pending output is flushed;
+  avail_out must be large enough to hold all the uncompressed data.  (The size
+  of the uncompressed data may have been saved by the compressor for this
+  purpose.) The next operation on this stream must be inflateEnd to deallocate
+  the decompression state.  The use of Z_FINISH is never required, but can be
+  used to inform inflate that a faster approach may be used for the single
+  inflate() call.
 
      In this implementation, inflate() always flushes as much output as
   possible to the output buffer, and always uses the faster approach on the
-  first call. So the only effect of the flush parameter in this implementation
+  first call.  So the only effect of the flush parameter in this implementation
   is on the return value of inflate(), as noted below, or when it returns early
-  because Z_BLOCK is used.
+  because Z_BLOCK or Z_TREES is used.
 
      If a preset dictionary is needed after this call (see inflateSetDictionary
   below), inflate sets strm->adler to the adler32 checksum of the dictionary
   chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
   strm->adler to the adler32 checksum of all output produced so far (that is,
   total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
-  below. At the end of the stream, inflate() checks that its computed adler32
+  below.  At the end of the stream, inflate() checks that its computed adler32
   checksum is equal to that saved by the compressor and returns Z_STREAM_END
   only if the checksum is correct.
 
-    inflate() will decompress and check either zlib-wrapped or gzip-wrapped
-  deflate data.  The header type is detected automatically.  Any information
-  contained in the gzip header is not retained, so applications that need that
-  information should instead use raw inflate, see inflateInit2() below, or
-  inflateBack() and perform their own processing of the gzip header and
-  trailer.
+    inflate() can decompress and check either zlib-wrapped or gzip-wrapped
+  deflate data.  The header type is detected automatically, if requested when
+  initializing with inflateInit2().  Any information contained in the gzip
+  header is not retained, so applications that need that information should
+  instead use raw inflate, see inflateInit2() below, or inflateBack() and
+  perform their own processing of the gzip header and trailer.
 
     inflate() returns Z_OK if some progress has been made (more input processed
   or more output produced), Z_STREAM_END if the end of the compressed data has
@@ -449,27 +486,28 @@
   preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
   corrupted (input stream not conforming to the zlib format or incorrect check
   value), Z_STREAM_ERROR if the stream structure was inconsistent (for example
-  if next_in or next_out was NULL), Z_MEM_ERROR if there was not enough memory,
+  next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory,
   Z_BUF_ERROR if no progress is possible or if there was not enough room in the
-  output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and
+  output buffer when Z_FINISH is used.  Note that Z_BUF_ERROR is not fatal, and
   inflate() can be called again with more input and more output space to
-  continue decompressing. If Z_DATA_ERROR is returned, the application may then
-  call inflateSync() to look for a good compression block if a partial recovery
-  of the data is desired.
+  continue decompressing.  If Z_DATA_ERROR is returned, the application may
+  then call inflateSync() to look for a good compression block if a partial
+  recovery of the data is desired.
 */
 
 
 ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
 /*
      All dynamically allocated data structures for this stream are freed.
-   This function discards any unprocessed input and does not flush any
-   pending output.
+   This function discards any unprocessed input and does not flush any pending
+   output.
 
      inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
-   was inconsistent. In the error case, msg may be set but then points to a
+   was inconsistent.  In the error case, msg may be set but then points to a
    static string (which must not be deallocated).
 */
 
+
                         /* Advanced functions */
 
 /*
@@ -484,55 +522,57 @@
                                      int  memLevel,
                                      int  strategy));
 
-     This is another version of deflateInit with more compression options. The
-   fields next_in, zalloc, zfree and opaque must be initialized before by
-   the caller.
+     This is another version of deflateInit with more compression options.  The
+   fields next_in, zalloc, zfree and opaque must be initialized before by the
+   caller.
 
-     The method parameter is the compression method. It must be Z_DEFLATED in
+     The method parameter is the compression method.  It must be Z_DEFLATED in
    this version of the library.
 
      The windowBits parameter is the base two logarithm of the window size
-   (the size of the history buffer). It should be in the range 8..15 for this
-   version of the library. Larger values of this parameter result in better
-   compression at the expense of memory usage. The default value is 15 if
+   (the size of the history buffer).  It should be in the range 8..15 for this
+   version of the library.  Larger values of this parameter result in better
+   compression at the expense of memory usage.  The default value is 15 if
    deflateInit is used instead.
 
-     windowBits can also be -8..-15 for raw deflate. In this case, -windowBits
-   determines the window size. deflate() will then generate raw deflate data
+     windowBits can also be -8..-15 for raw deflate.  In this case, -windowBits
+   determines the window size.  deflate() will then generate raw deflate data
    with no zlib header or trailer, and will not compute an adler32 check value.
 
-     windowBits can also be greater than 15 for optional gzip encoding. Add
+     windowBits can also be greater than 15 for optional gzip encoding.  Add
    16 to windowBits to write a simple gzip header and trailer around the
-   compressed data instead of a zlib wrapper. The gzip header will have no
-   file name, no extra data, no comment, no modification time (set to zero),
-   no header crc, and the operating system will be set to 255 (unknown).  If a
+   compressed data instead of a zlib wrapper.  The gzip header will have no
+   file name, no extra data, no comment, no modification time (set to zero), no
+   header crc, and the operating system will be set to 255 (unknown).  If a
    gzip stream is being written, strm->adler is a crc32 instead of an adler32.
 
      The memLevel parameter specifies how much memory should be allocated
-   for the internal compression state. memLevel=1 uses minimum memory but
-   is slow and reduces compression ratio; memLevel=9 uses maximum memory
-   for optimal speed. The default value is 8. See zconf.h for total memory
-   usage as a function of windowBits and memLevel.
+   for the internal compression state.  memLevel=1 uses minimum memory but is
+   slow and reduces compression ratio; memLevel=9 uses maximum memory for
+   optimal speed.  The default value is 8.  See zconf.h for total memory usage
+   as a function of windowBits and memLevel.
 
-     The strategy parameter is used to tune the compression algorithm. Use the
+     The strategy parameter is used to tune the compression algorithm.  Use the
    value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
    filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
    string match), or Z_RLE to limit match distances to one (run-length
-   encoding). Filtered data consists mostly of small values with a somewhat
-   random distribution. In this case, the compression algorithm is tuned to
-   compress them better. The effect of Z_FILTERED is to force more Huffman
+   encoding).  Filtered data consists mostly of small values with a somewhat
+   random distribution.  In this case, the compression algorithm is tuned to
+   compress them better.  The effect of Z_FILTERED is to force more Huffman
    coding and less string matching; it is somewhat intermediate between
-   Z_DEFAULT and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as fast as
-   Z_HUFFMAN_ONLY, but give better compression for PNG image data. The strategy
-   parameter only affects the compression ratio but not the correctness of the
-   compressed output even if it is not set appropriately.  Z_FIXED prevents the
-   use of dynamic Huffman codes, allowing for a simpler decoder for special
-   applications.
+   Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY.  Z_RLE is designed to be almost as
+   fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data.  The
+   strategy parameter only affects the compression ratio but not the
+   correctness of the compressed output even if it is not set appropriately.
+   Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler
+   decoder for special applications.
 
-      deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
-   memory, Z_STREAM_ERROR if a parameter is invalid (such as an invalid
-   method). msg is set to null if there is no error message.  deflateInit2 does
-   not perform any compression: this will be done by deflate().
+     deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
+   memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid
+   method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is
+   incompatible with the version assumed by the caller (ZLIB_VERSION).  msg is
+   set to null if there is no error message.  deflateInit2 does not perform any
+   compression: this will be done by deflate().
 */
 
 ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
@@ -540,37 +580,37 @@
                                              uInt  dictLength));
 /*
      Initializes the compression dictionary from the given byte sequence
-   without producing any compressed output. This function must be called
-   immediately after deflateInit, deflateInit2 or deflateReset, before any
-   call of deflate. The compressor and decompressor must use exactly the same
+   without producing any compressed output.  This function must be called
+   immediately after deflateInit, deflateInit2 or deflateReset, before any call
+   of deflate.  The compressor and decompressor must use exactly the same
    dictionary (see inflateSetDictionary).
 
      The dictionary should consist of strings (byte sequences) that are likely
    to be encountered later in the data to be compressed, with the most commonly
-   used strings preferably put towards the end of the dictionary. Using a
+   used strings preferably put towards the end of the dictionary.  Using a
    dictionary is most useful when the data to be compressed is short and can be
    predicted with good accuracy; the data can then be compressed better than
    with the default empty dictionary.
 
      Depending on the size of the compression data structures selected by
    deflateInit or deflateInit2, a part of the dictionary may in effect be
-   discarded, for example if the dictionary is larger than the window size in
-   deflate or deflate2. Thus the strings most likely to be useful should be
-   put at the end of the dictionary, not at the front. In addition, the
-   current implementation of deflate will use at most the window size minus
-   262 bytes of the provided dictionary.
+   discarded, for example if the dictionary is larger than the window size
+   provided in deflateInit or deflateInit2.  Thus the strings most likely to be
+   useful should be put at the end of the dictionary, not at the front.  In
+   addition, the current implementation of deflate will use at most the window
+   size minus 262 bytes of the provided dictionary.
 
      Upon return of this function, strm->adler is set to the adler32 value
    of the dictionary; the decompressor may later use this value to determine
-   which dictionary has been used by the compressor. (The adler32 value
+   which dictionary has been used by the compressor.  (The adler32 value
    applies to the whole dictionary even if only a subset of the dictionary is
    actually used by the compressor.) If a raw deflate was requested, then the
    adler32 value is not computed and strm->adler is not set.
 
      deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
-   parameter is invalid (such as NULL dictionary) or the stream state is
+   parameter is invalid (e.g.  dictionary being Z_NULL) or the stream state is
    inconsistent (for example if deflate has already been called for this stream
-   or if the compression method is bsort). deflateSetDictionary does not
+   or if the compression method is bsort).  deflateSetDictionary does not
    perform any compression: this will be done by deflate().
 */
 
@@ -581,26 +621,26 @@
 
      This function can be useful when several compression strategies will be
    tried, for example when there are several ways of pre-processing the input
-   data with a filter. The streams that will be discarded should then be freed
+   data with a filter.  The streams that will be discarded should then be freed
    by calling deflateEnd.  Note that deflateCopy duplicates the internal
-   compression state which can be quite large, so this strategy is slow and
-   can consume lots of memory.

[... truncated: 7988 lines follow ...]

Other related posts:

  • » [haiku-commits] r36780 - in haiku/trunk: headers/libs/zlib src/libs/zlib - korli