[gpumd] Re: Quantum correction to thermal conductivity

  • From: "소순성" <soonsung2001@xxxxxxxxxx>
  • To: <gpumd@xxxxxxxxxxxxx>
  • Date: Fri, 30 Apr 2021 15:48:06 +0900

Dear Zheyong Fan.

Thank you for direct advice!
Then, I wonder it is meaningful to calculate thermal conductivities for 
graphene nano ribbon at low temperature (under 300K such as 40K, 100K, ...) 
with MD method.


Soonsung.









--------- Original Mail ---------Sender : Bruce Fan <brucenju@xxxxxxxxx>
Recipient :  <gpumd@xxxxxxxxxxxxx>
Received Date : 2021/Apr/30(Fri) 14:03:55
Subject : [gpumd] Re: Quantum correction to thermal conductivity
Both papers are wrong. Forget about them. If you can solve the quantum 
correction problem for graphene and alike, you can submit your paper to PRL or 
Nature. 

Zheyong
"소순성" <soonsung2001@xxxxxxxxxx> 于 2021年4月30日周五 04:55写道:
Hi,
Thank you for Nice GPUMD program and I have question today.

When we deal with thermal conductivity of graphene at temperature below the 
debye temperature, 
it is reported in many papers that the thermal conductivity should be treated 
with quantum-correction.

So I saw there are generally two methods that
1. from the paper1: Equilibrium Molecular Dynamics (MD) Simulation Study of 
Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD 
Potentials (Electronics 2015, 4, 1109-1124)
which said that it can be calculated with thermal conductivity of MD (k_md) 
multiplied by d(Tmd)/d(Tq), following the equation13 in the paper.

and

2. from the paper2: Lateral and flexural thermal transport in stanene/2D-SiC 
van der Waals heterostructure, (2020 Nanotechnology 2020 31 505702)
which said that it can be calculated from Cv (specific heat) which can be 
obtained with integration of phonon density of states.

As I got the phonon DOS at 300K and followed second method, Cvx=Cvy=0.18 and 
Cvz=0.5
and I obtained quantum-corrected thermal conducivity of 
k_in-plane=1000*Cvy=180, k_flexural= 2000*Cvz=1000 (W/mK)
so that ktot=k_in-plane+k_flexural=1180 (W/mK)

However, this value is much lower than that in paper1, which shows little 
difference after quantum-correction at 300K.


How can this problem be solved?




Other related posts: