[geocentrism] Re: Regner concedes?

  • From: j a <ja_777_aj@xxxxxxxxx>
  • To: geocentrism@xxxxxxxxxxxxx
  • Date: Tue, 6 Nov 2007 09:27:18 -0800 (PST)

Dr. Jones, My replies in red,
   
  I do not understand your drawings. You have not changed the rotation axis 
from one scenario to the other, so the box is just as far away from the axis in 
both cases. Correct, but does not matter. What I changed was the way the camera 
moves around the axis, to demontrate the difference between a camera recording 
nightly trails and a camera recording annual trails.

In diagrams 1, 2 and 3, your camera should not be diverging onto the axis, but 
be parallel with it. As Allen has said, it does not matter what angle the 
camera is pointed at, as long as you leave it still, it will record a star 
trail. The difference between different camera angles will determine where the 
axis is in the picture.

Just like you have in 4, 5 and 6, but here you have not changed the axis! If 
you change the axis so as to point towards the box and make the rotor blades 
orthogonal to that axis, then what is the difference between the mechanism of 
1, 2 and 3, from 4, 5 and 6? I believe I would still record the same event, 
just the center of rotation would appear in a different place on the film. The 
difference between the two (1,2,3 & 4,5,6)(I wish I had thought to name these 
better) is the difference between the stationary camera rotating with the axis 
which will record a star trail and the not stationary camera rotating against 
the axis which will not record a star trail.

Perhaps you could redo the diagrams and see. I'll see what I can do, to make it 
clearer.



      
 
      Allen,
   
  Allow me to demonstrate. Actually, your mention of the helicopter is what got 
my confused questioning to gel into something I could better understand, so I 
have used the helicopter as my device. I found this much easier to visualize 
and draw the motions. The Helicopters body will represent whatever axis we are 
considering. The box on the ground beside the helicopter is any star you want 
to consider a star trail for. The rotor is either the baseline of earths radius 
or its orbit depending on whether you are talking about the nightly or annual 
trail. The Camera on the end of the rotor the camera sitting on a tripod 
anywhere on the earth.
   
  Drawings 1, 2, 3 are of the setup of my system to simulate the nightly star 
circle. The only difference between 1,2&3 is that I am increasing the length of 
the rotor axis, so that you can see where the circle produced is heading as the 
distance begins to negate the baseline (rotor length). Drawing 7 shows the 
positions of the camera as it is swung around the axis. Drawing 9 shows the 
results (the trail formed by taking a timelapse photo through one revolution in 
each of the three drawings). The circle is progressively moving to center on 
the axis of rotation. Exactly what we see in the sky and what your model 
predicts.
   
  Drawings 4, 5, 6 are of the setup of my system to simulate the annual star 
circle. The only difference between 4,5&6 is that I am increasing the length of 
the rotor axis, so that you can see where the circle produced is heading as the 
distance becomes more important than the baseline (rotor length). Drawing 7 
shows the positions of the camera as it is swung around the axis. Drawing 8 
shows the results (the trail formed by taking a timelapse photo through one 
revolution in each of the three drawings). Both circles (the axis circle and 
the box circle) are decreasing in size and will diapear into a dot with enough 
distance. Exactly what we see in the sky, but not what you are predicting.
   
  So what is different in my model to yours? If your camera takes pictures 24 
hours apart, you are not taking into consideration that the camera has not 
rotated with the axis of rotation you are trying to record, and as my model 
shows, that is all the difference needed to make the annual trails disapear.
   
  This is not a proof of HC, only a disproof of the disproof, which are not the 
same.
   
  JA...


  
---------------------------------
     
Free 3D Marine Aquarium Screensaver
Watch dolphins, sharks & orcas on your desktop! Check it out at 
www.inbox.com/marineaquarium


 __________________________________________________
Do You Yahoo!?
Tired of spam?  Yahoo! Mail has the best spam protection around 
http://mail.yahoo.com 

Other related posts: